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Vascular Calcification in Chronic Kidney Disease
Mechanisms and Clinical Implications

Shahrzad Ossareh

Vascular calcification is a well-known complication of chronic kidney 
disease and one of the main predictors for increased cardiovascular 
morbidity and mortality in these patients. It may happen in 2 main 
types of intimal calcification, as a part of diffuse atherosclerosis, and 
medial calcification, which is generally focal in distribution, unrelated 
to atherosclerotic risk factors, and seen in younger hemodialysis 
patients. Pathogenesis may be genetic, mineral metabolism related, 
or nonmineral metabolism related. Increased calcium, phosphorus, 
and calcium- phosphorus product; decreased parathyroid hormone 
level; and overzealous use of active vitamin D supplements are the 
main mineral metabolism-related mechanisms of vascular calcification. 
Other mechanisms are formation of matrix vesicles and cellular 
apoptosis, with generation of hydroxyapatite crystals within vesicles 
and apoptotic bodies. The interplay of various activator proteins 
of vascular calcification such as bone morphogenetic proteins and 
receptor activator of nuclear factor-kappa B ligand, or inhibitor 
proteins like matrix Gla protein, bone morphogenetic protein-7, 
osteopontin, osteoprotegerin, fetuin-A, Smad6, and pyrophosphate 
are important in establishment of vascular calcification. Vascular 
calcification is related to all-cause and cardiovascular mortality both 
in general population and dialysis patients. Minimizing traditional 
risk factors of vascular calcification, prevention of hypercalcemia, 
and avoidance of high doses of calcium-based phosphate binders 
and vitamin D analogues are important measures for prevention 
or attenuation of progression of vascular calcification. Sevelamer 
and cinacalcet may prevent progression of vascular calcification. 
With the evolving knowledge of the pathogenesis of vascular 
calcification, we can look forward to emergence of novel therapies 
for this complication in the future.
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INTRODUCTION
Cardiovascular disease is an important predictor 

of mortality in patients with end-stage renal disease 
(ESRD) and accounts for almost 50% of deaths in these 
patients.1 Approximately, 20% of this can be attributed 
to coronary artery disease. Arterial calcification and 
especially coronary artery calcification is known 
as a risk factor for cardiovascular disease in these 

patients, and cross-sectional and longitudinal 
studies on ESRD patients have shown that arterial 
calcifications are associated with cardiovascular 
morbidity and are an independent predictor of 
all-cause and cardiovascular mortality.2,3 Arterial 
medial calcification has been shown as a strong 
prognostic marker of all-cause and cardiovascular 
mortality in hemodialysis patients, independent of 
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classical atherogenic factors.2 One study showed 
2.5 to 5 times higher grades of coronary artery 
calcification in dialysis versus nondialysis patients, 
with rapid progression of calcification in dialysis 
patients.4 Also, cardiac valvular calcification was 
reported in more than 50% of dialysis patients in 
this study. They explained the principal effect of 
arterial medial calcification on arterial function 
through increased arterial stiffness.

The main question is what causes and drives 
this early and extensive vascular calcification in 
patients with chronic kidney disease (CKD), and 
what the main strategies are to prevent or possibly 
reverse it. In this review we will try to elucidate 
the principal mechanisms of vascular calcification 
in CKD, and to summarize the main available 
strategies to prevent or treat vascular calcification, 
as one of the main causes of cardiovascular events 
in these patients.

EPIDEMIOLOGY
Increased frequency of vascular calcification 

has been reported in patients with CKD, even 
in predialysis era and before widespread use of 
calcium and vitamin D supplements and calcium-
containing phosphate binders.5,6 Widespread soft 
tissue calcification was observed in more than 60% 
of children with CKD and ESRD, and systemic 
calcinosis and vascular calcifications, in 36% of 
them.7 Coronary artery calcification has been shown 
in up to 92% of young ESRD adults with sequential 
computed tomography with electrocardiography 
gating.8 Using electron beam computed tomography, 
a high prevalence of coronary artery calcification 
has been reported among CKD patients, which was 
significantly greater among diabetic CKD patients 
versus nondiabetic CKD controls (94% versus 59%, 
P < .001).9 Even conventional radiographic studies 
could reveal vascular calcification in about 60% 
of patients with ESRD and 57% progression over 
time.10 The same investigators later reported some 
degrees of vascular calcification in about 50% 
of patients undergoing continuous ambulatory 
peritoneal dialysis.11 Therefore, it seems that 
vascular calcification is and has been a frequent 
f inding among CKD and ESRD patients  in 
predialysis and postdialysis eras, in different 
stages of CKD, and before and after widespread 
use of the calcium-containing phosphate binders 
and vitamin D supplement.12 

DEFINITION
Calcium taken from arterial calcification of 

uremic patients is made up of hydroxyapatite 
crystals (Ca10[PO4]6[OH]2), same as the type 
found in skeleton, or it consists of brushite (calcium 
[magnesium] phosphate or whitlockite) in calcified 
stenotic regions of arteriovenous fistula and human 
aorta.13,14 Calcification of arterial walls may occur in 
intimal or medial layers, with different pathogenic 
mechanisms and clinical significance. Intimal 
calcification typically occurs in atherosclerotic 
lesions of muscular arteries such as coronary 
arteries and the aorta and usually starts in infancy 
in the form of small collections of macrophages 
filled with lipid droplets, which will later develop 
into pre-atheromas and ultimately atherosclerotic 
lesions.15 Pre-atheromas contain small pools of 
lipid droplets and dead cell remnants as well as 
macrophage foam cells.15 Atheromas contain a 
lipid core, increased extracellular lipid displacing 
smooth muscle cells, and calcium granules.15 

Medial calcification may occur in elastic lamina 
of large- and medium-sized arteries, ie, muscular-
type arteries (Monckeberg’s arteriosclerosis), such 
as femoral, tibial, and uterine arteries, in a focal 
distribution and almost exclusively associated 
with vascular smooth muscle cells (VSMCs).16,17 
It has a pipe-like or tram-line appearance and is 
considered as a noninflammatory process.18,19

Intimal calcification occurs in atherosclerotic 
lesions and is seen with advancing age and other 
typical risk factors associated with atherosclerosis 
such as hypertension, diabetes, dyslipidemia, 
and smoking.2,20 It is a patchy and discontinuous 
process and involves VSMCs and macrophages in 
lipid-rich regions.20 Medial calcification is more 
commonly observed in young and middle-aged 
patients without conventional atherosclerotic 
risk factors and has been shown to be closely 
associated with the duration of hemodialysis and 
calcium-phosphate disorders, including the oral 
dose of elemental calcium prescribed as phosphate 
binder (CaCO3).2 Intimal calcification may occur 
independently of medial calcification and vice 
versa and in patients with ESRD, a mixture of 
both types has been observed in affected vessels.21 

PATHOGENESIS
Pathogenesis of vascular calcification in CKD 

and ESRD patients can be arbitrarily divided into 3 
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entities of genetic susceptibility, mineral metabolism 
related, and mineral metabolism unrelated (Table).

Genetic Susceptibility
Genetic studies have shown susceptibility of 

certain inbred mice to myocardial cell necrosis and 
calcification (dystrophic cardiac calcinosis) and 
aortic calcification in the presence of a single major 
locus, Dyscalc, located on proximal chromosome 
7 in a region syntenic with human chromosomes 
19q13 and 11p15.22-24 Other described models of 
genetic predisposition to vascular calcification 
are apolipoprotein E deficient mice, in which 
osteopontin deficiency may attenuate atherosclerosis 
and aggravate vascular calcification25; low density 
lipoprotein (LDL)- receptor deficient mice, in which 
macrophage migration inhibitory factor deficiency 
may prevent atherosclerosis26;  spontaneous 
calcification of arteries and cartilage in mice 
lacking matrix Gla protein27; and in vitro enhanced 
susceptibility of smooth muscle cells deficient 
in osteopontin to calcification.28 Mice knocked 
out in the membrane protein Klotho, carbonic 
anhydrase inhibitor, or Fetuin A (an important 
calcification inhibitor protein) are further examples 

of susceptibility to vascular calcification.29-31

In human studies, increased platelet reactivity 
due to single nucleotide polymorphism on 
chromosome 9p21.3 has been associated with 
increased vascular calcification.32 Variations in 
human lipoxygenase gene pathway have been 
associated with subclinical atherosclerosis in 
diabetic patients.33 Patients with parathyroid gene 
AA variant have been found to have a higher 
prevalence of calcific aortic stenosis.34 Single 
nucleotide polymorphism of bone morphogenetic 
protein (BMP) have been associated with inverse 
relationships between bone mineralization and 
calcification in the coronary, carotid, and abdominal 
aorta in a diabetes-enriched cohort of European 
Americans.35 Many other genetic predispositions 
to vascular calcification have also been described 
in non-kidney-failure population.36-39 However, 
there are few pieces of data in patients with kidney 
failure. Polymorphism in a glucose transporter 
gene (GLUT-1 XbaI) has been shown to be more 
prevalent in nondiabetic uremic patients with 
vascular calcification (30.7% versus 4.5%, P = .001).40 
Glucose transporters mediate the facilitative uptake 
of glucose into cells, with GLUT-1 being the 

Mechanism Description
Genetic Susceptibility

Murine Models Dyscalc gene
Apolipoprotein E null
Low-density lipoprotein-receptor null
Matrix Gla protein null 
Klotho null 
Carbonic anhydrase inhibitor null
Fetuin-A null

Human examples Single nucleotide polymorphism on chromosome 9p21.3
Human lipoxygenase gene pathway variations
Parathyroid gene AA variant 
Single nucleotide polymorphism of bone morphogenic protein 
Polymorphism in glucose transporter-1 XbaI gene 

Mineral metabolism related Increased calcium level 
Increased phosphate level 
Decreased parathyroid hormone level 
Active vitamin D supplement (high dose?)

Mineral metabolism unrelated
Activators Bone morphogenetic protein 2 

Receptor activator of nuclear factor-kappa B ligand
Inhibitors Matrix Gla protein 

Bone morphogenetic protein 7
Osteopontin 
Osteoprotegerin 
Fetuin-A
Smad6 
Pyrophosphate

Summary of Pathogenic Mechanisms of Vascular Calcification
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predominant isoform in vascular VSMCs. Clones of 
human cells overexpressing the GLUT-1 transporter 
showed a high increase in intracellular glucose 
concentrations, mimicking the diabetic milieu. It 
is possible that high intracellular glucose together 
with uremic factors may play an important role 
in vascular calcification by transforming VSMCs 
into osteoblast-like cells.

Mineral Metabolism Related
Increased calcium and phosphate levels. 

Abnormalities in mineral metabolism have been 
accused for the development of vascular calcification 
in patients with CKD and ESRD. Increased 
phosphate level due to decreased phosphate 
excretion is generally observed in advanced 
CKD, and together with increased calcium and 
calcium-phosphate product, it has been attributed 
to development of vascular calcification in these 
patients.2,4142 Various studies have reported that 
increased calcium intake may directly increase 
vascular calcification in patients with ESRD and 
murine models of CKD,43-45 although a direct 
correlation between vascular calcification as 
represented by carotid intima-media thickness 
has not been approved in all studies.46 On the 
other hand, in a number of studies, reversal of 
hyperphosphatemia and heypercalcemia with 
sevelamer has been shown to decrease vascular 
calcification in ESRD patients.47-49

Two different mechanisms are proposed to 
explain the occurrence of vascular calcification 
in calcium-phosphate disorders: (a) a passive, 
direct calcium-phosphate precipitation in the 
vasculature, and (b) an active induction of the 
expression of bone-associated genes in VSMCs.50 
Yang and colleagues showed that increase in 
either calcium level, phosphorus level, or both 
can induce mineralization of human smooth 
muscle cells in vitro via enhancing the sodium-
dependent phosphate cotransporter-dependent 
mineralization pathway.51 Hyperphophatemia and 
long-term elevated calcium level upregulate the 
type III sodium-dependent phosphate cotransporter, 
Pit-1.51,52 Interestingly, phosphonoformic acid, an 
inhibitor of this system, completely blocks calcium- 
as well as phosphorus-induced mineralization 
in human smooth muscle cells.51 These findings 
emphasize the importance of hyperphosphatemia 
and calcium load in the development of vascular 

calcification in CKD patients, although several 
lines of evidence indicate the effect of other factors 
in development of vascular calcification in these 
patients.

Parathyroid hormone level.  The role of 
parathyroid hormone (PTH) in vascular calcification 
is not yet clear. Chertow and colleagues showed 
that lower PTH levels are associated with more 
extensive calcification in calcium-treated subjects, 
whereas higher PTH levels are associated with 
calcification in sevelamer-treated subjects.44 They 
hypothesized that exogenous calcium loading 
and/or unintended suppression of PTH may 
contribute to progressive calcific vascular disease 
in hemodialysis patients. Adragao and colleagues 
could not show any relationship between PTH 
level and a vascular calcification score defined 
according to radiographic findings of the pelvis and 
hands in a group of 123 hemodialysis patients.53 
Also in the studies by our group46 and by Oh and 
colleagues,54 carotid intima-media thickness did 
not correlate with PTH level. However, Oh and 
colleagues showed coronary calcium scores to be 
strongly correlated with time-averaged mean serum 
PTH as well as C-reactive protein (CRP) level, 
Chlamydia pneumoniae seropositivity, and plasma 
homocysteine level. In the study by Kraśniak and 
colleagues, neither carotid intima-media thickness 
nor the number of atherosclerotic plaques were 
predicted by PTH level in multivariate analysis55; 
however, Goldsmith and colleagues showed 
hyperparathyroidism to be a determinant of severity 
and rate of progression of vascular calcification 
in long-term hemodialysis patients.56 On the 
contrary, Shao and colleagues could inhibit vascular 
calcification and aortic osteogenic differentiation 
with PTH supplementation (teriparatide) via a 
direct effect on osteopontin in the diabetic LDL 
receptor-deficient mice.57

Generally, PTH and PTH-related protein are 
assumed to induce bone demineralization on the 
one hand and inhibit vascular calcification on the 
other hand, in concert with other inhibitors of 
mineralization of VSMCs such as fetuin-A, matrix 
Gla protein, and vitamin K.58 To summarize, most 
authorities suggest that PTH may have a protective 
effect against vascular calcification, and the severity 
of vascular calcification may increase in conditions 
of adynamic bone disease and low PTH.59

Vitamin D. Most human tissues, including 
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endothelial and VSMCs, contain vitamin D receptors 
and both endothelial cells and VSMCs possess 
1α-hydroxylase and can synthesize active vitamin 
D metabolites locally.60, 61 Zehnder and colleagues 
confirmed the presence of 1α-hydroxylase in 
human umbilical vein endothelial cells and showed 
the induction of this enzyme by inflammatory 
cytokines such as tumor necrosis factor (TNF)-α 
and consequent increased adhesion of monocytes 
to endothelial cells.61 They hypothesized that the 
rapid induction of endothelial 1α-hydroxylase 
activity by inflammatory cytokines suggests a novel 
autocrine/paracrine role for the enzyme, possibly 
as a modulator of endothelial cell adhesion. 

The impact of vitamin D on vascular calcification 
is not clearly known. Watson and colleagues 
showed a significant negative correlation between 
1,25-dihydroxyvitamin D3 level and coronary 
calcification in 173 patients with normal kidney 
function and high risk for coronary artery disease.62 
Braam and colleagues showed the beneficial effect 
of supplemental vitamin D plus vitamin K on 
elastic properties of the common carotid artery in a 
group of postmenopausal women and explained it 
by increased activity of matrix Gla protein, which 
is a potent inhibitor of vascular calcification and 
dependent on vitamin D and Vitamin K for its 
action.63

On the other hand, many researchers have shown 
increased vascular calcification as the result of active 
vitamin D therapy in uremic patients and murine 
models.56,64-69 Goldsmith and colleagues found a 
significant positive correlation between the extent 
of vascular calcification, assessed by radiographic 
findings, and vitamin D concentration in a group 
of chronic hemodialysis patients.56 Briese and 
colleagues showed a positive correlation between 
both cumulative calcitriol intake and active vitamin 
D metabolite levels and left ventricular mass index, 
as a surrogate marker for cardiovascular disease, 
although only cumulative calcium-phosphate binder 
intake and not calcitriol intake, was correlated 
with intima-media thickness.64 In a systematic 
review by McCullough and colleagues, among 
30 studies over 20 years, 3 related treatment with 
vitamin D analogues to vascular calcification.65 In 
a rat model of secondary hyperparathyroidism, 
both calcitriol and cinacalcet were successful in 
control of hyperparathyroidism; however, only 
calcitriol-induced hypercalcemia increased calcium-

phosphorus product and vascular calcification.66 
High-dose calcitriol treatment in uremic rats with 
hyperparathyroidism could induce hypertension, 
left ventricular hypertrophy, and diffuse aortic 
intimal and medial calcification in the absence of 
hypercalcemia and increased calcium-phosphorus 
product, compared to vehicle-treated uremic rats 
and sham operated rats.67 Also, studies have shown 
that fibroblast growth factor 23- and Klotho-
knockout mice develop widespread soft tissue and 
vascular calcification due to uninhibited production 
of active vitamin D and increased serum calcium 
and phosphorus levels.68,69

Shroff and colleagues showed that both low 
and high levels of 1,25-dihydroxyvitamin D are 
associated with abnormal vascular structure and 
calcification, possibly through a dual effect on 
calcium phosphate homeostasis and inflammation.70 
In their study, both carotid intima-media thickness 
and calcification scores showed a U-shaped 
distribution across 1,25-dihydroxyvitamin D 
levels, and patients with both low and high 
1,25-dihydroxyvitamin D had significantly greater 
carotid intima-media thickness and calcification 
scores than those with normal levels.  Low 
1,25-dihydroxyvitamin D levels were also associated 
with higher levels of high-sensitivity CRP. Overall, 
it seems that there is a delicate balance between 
the protective effect of vitamin D on cardiovascular 
system and its vascular calcifying effect, which 
may itself occur with either high or low doses of 
vitamin D supplement. 

Mineral Metabolism Unrelated
Molecular mechanisms. Vascular calcification, 

previously thought to be a degenerative process, 
is a cell-regulated ossification, which is primarily 
osteogenic in human and chondrogenic in mice.71 
Various proteins involved in osteogenesis have been 
shown to be present in VSMCs and atherosclerotic 
lesions such as osteopontin, BMP2 and matrix Gla 
protein.72-74 Arterial calcification is the result of a 
complex interplay between stimulating proteins 
such as BMP2 and receptor activator of nuclear 
factor-kappa B (RANK) ligand and inhibitory 
proteins such as matrix Gla protein, BMP7, 
osteoprotegerin, fetuin-A, and osteopontin.75

Bovine aortic smooth muscle cells de-differentiate 
and lose their smooth muscle cell specific markers 
when placed under calcifying conditions and 
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subsequently gain osteogenic phenotype.76 More 
than 30 years before, Chamley-Campbell and 
colleagues proposed the paradigm that medial 
VSMCs exist  in differentiated “contractile’ 
phenotype that is de-differentiated into a “synthetic” 
phenotype with migration into intimal layer as a 
repair response to injury.77,78 Formation of a VSMC-
rich fibrous cap may act as a barrier between the 
lipid-rich prothrombotic plaque and blood flow.79 
During the phenotypic change, VSMCs may acquire 
characteristics of a diverse range of mesenchymal 
lineages, including osteoblastic, chondrocytic and 
adipocytic.80 Multiple members of transforming 
growth factor-β1 superfamily act in concert to 
modulate VSMC phenotype.81 A feature of the 
osteogenic transformation is upregulation of the 
transcription factor, core binding factor alpha1/
runt-related transcription factor 2 (Cbfa1/Runx2), 
which is an obligate transcription factor in the 
regulation of bone (osteoblastic) differentiation.80 

Vascular calcification starts in the cells with 
formation of matrix vesicles, which are extracellular 
100-nm-diameter membrane-derived particles 
selectively located in the matrix of the bone, 
cartilage, and predentin.82 They contain the necessary 
calcium-binding proteins and phosphatases for 
nucleation of hydroxyapatite. The vesicles are 
the initial site of calcification in all skeletal tissue, 
and hydroxyapatite crystals are generated in 
them during a phosphatase-dependent (including 
alkaline phosphatase) phase 1 mineralization.82 
Phase 2 of mineralization begins with breakdown 
of matrix vesicle membranes, exposing preformed 
hydroxyapatite to the extracellular fluid, after 
which mineral crystal proliferation is governed 
by extracellular conditions.82 Matrix vesicles have 
been detected in VSMCs of human arteries and it 
seems that the same calcification process is effective 
in atherosclerosis.83,84 

Another important factor in initiation of vascular 
calcification is apoptosis of VSMCs. Isner and 
colleagues85 first showed the role of apoptosis in 
pathogenesis of human atherosclerotic lesions, 
which was further confirmed by the work of their 
group and others.85-88 Vascular smooth muscle cells 
from normal vessel walls demonstrate little basal 
cell proliferation or apoptosis. In plaque tissue, 
however, inflammatory cells, cytokines, modified 
LDL cholesterol, and altered blood pressure and flow 
may change the fine balance between proliferation 

and cell death and increase the sensitivity of 
these cells to apoptosis.89 Apoptosis is triggered 
by interaction of VSMCs with inflammatory cells 
that express cell surface death ligands or secrete 
proapoptotic cytokines such as TNF-α and through 
activation of death receptors such as Fas.80,89,90 
Apoptosis precedes human vascular calcification 
in vitro, and VSMC-derived apoptotic bodies can 
concentrate and crystallize calcium.88 Some studies 
have implied that apoptotic bodies in atherosclerotic 
plaques are similar to matrix vesicles and that 
these may initiate calcification.91

An interest ing f inding by Raynolds and 
colleagues is the role of serum calcium and 
phosphorus level in the calcification process.84 
They showed that although vascular calcification 
was initiated by the release of membrane-bound 
matrix vesicles from living VSMCs and also by the 
release of apoptotic bodies from dying cells, this 
could not happen in the presence of serum with 
mineralization inhibitors, such as fetuin-A and 
matrix Gla protein. On the other hand, vesicles 
released by VSMCs after prolonged exposure to 
calcium and phosphorus contained preformed 
basic calcium phosphate and calcified extensively.

Plasma Proteins. There are a number of proteins 
involved in vascular calcification acting either as 
inhibitors or inducers of this process.

Matrix Gla protein was first introduced by Price 
and colleagues and is a bone matrix protein with 
5 to 6 residues of the vitamin K-dependent amino 
acid, gamma-carboxyglutamic acid.92 It is mainly 
known as an inhibitor of calcification by inhibiting 
mesenchymal cell differentiation to the osteogenic 
lineage by preventing the action of the potent 
osteogenic and chondrogenic differentiation factor, 
BMP2.93 Spontaneous calcification of arteries and 
cartilages, together with osteoporosis and pathologic 
fractures, have been shown in mice lacking matrix 
Gla protein.94 Thus, it seems that matrix Gla protein 
is required to both promote normal bone formation 
and inhibit vascular calcification. Matrix Gla protein 
gamma-carboxylation is a vitamin K-dependent 
process; therefore, vitamin K deficiency can inhibit 
matrix Gla protein action and enhance vascular 
calcification.95

Serum levels of matrix Gla protein in dialysis 
patients did not show any correlation with 
coronary artery or aortic calcification score by 
spiral computed tomography; however, examining 
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the sections of inferior epigastric artery of dialysis 
patients showed that matrix Gla protein expression 
correlated with the presence of calcification.96 
Low levels of vitamin K have been shown in the 
majority of dialysis patients, and decreased level of 
circulating matrix Gla protein has been proposed 
to serve as a predictor of mortality in dialysis 
patients.97 Whether vitamin K supplementation 
improves outcomes requires further study.

Osteopontin is another matrix protein with 
inhibitory action on calcification. It is an acidic 

phosphoprotein normally found in mineralized 
tissues such as bones and teeth, as well as in the 
kidney and epithelial linings of the body.98 Addition 
of purified osteopontin to bovine aortic smooth 
muscle culture media has been shown to inhibit 
calcification.99 Osteopontin levels are associated 
with the presence and level of coronary artery 
calcification in dialysis patients,100 and recombinant 
osteopontin facilitates resorption of ectopic bone 
implanted in muscle.101 Osteopontin acts through 
self-aggregation and adhesion to apatite crystals 
through specific amino acid moieties.71

Fetuin-A or a2-Heremans-Schmid glycoprotein 
is also an important calcification inhibitor. This 
protein has been identified by Leberton and 
colleagues as a negative acute-phase reactant, 
more than 30 years earlier.102 Fetuin-A interacts 
directly with matrix vesicle release and may 
thus modulate vascular calcification processes 
locally and at early stages.103 Fetuin-A molecules 
form stable colloidal spheres with calcium and 
phosphorus, so-called “calciprotein particles,” 
which inhibit hydroxyapatite precipitation.104 It 
also decreases macrophage activation and release of 
proinflammatory cytokines, antagonizes the action 
of transforming growth factor-β, and opsonizes 
apoptotic bodies and promotes their phagocytosis.105

Fetuin-A levels are significantly lower in dialysis 
patients and this has been correlated with higher 
rates of vascular calcification, cardiovascular 
mortality, and malnutrition and inflammation states, 
as assessed by subjective global assessment and CRP 
levels, respectively.106-108 Results of these studies 
suggest fetuin-A as both a calcification inhibitor 
protein and a negative acute-phase reactant, as 
a link between inflammation atherosclerosis in 
patients with CKD.

Osteoprotegerin which was first identified by 
Simonet and colleagues as a glycoprotein and 

member of TNF receptor superfamily, inhibits 
osteoclast maturation and protects bone from 
normal osteoclast remodeling.109 It functions 
as a soluble decoy receptor for RANK ligand 
(osteoprotegerin ligand) and shares homologies with 
other members of the TNF receptor superfamily.110 
Osteoprotegerin is present in cultured VSMCs, and 
in rat models, selective inhibition of bone resorption 
by osteoprotegerin prevents vascular calcification 
induced by warfarin and vitamin D treatment.111 
This finding is another support for the link between 
vascular calcification and bone resorption. However, 
in human studies, both in normal population and 
dialysis patients, high levels of osteoprotegerin 
have been associated with coronary artery disease 
and vascular calcification.112,113 It seems that 
vascular role of osteoprotegerin is multifaceted 
and depends on the interplay of osteoprotegerin 
with its ligands; RANK ligand and TNF-related 
apoptosis-inducing ligand; and a bidirectional 
modulation involving osteogenic, inflammatory, 
and apoptotic responses.114 Morena and colleagues 
could show that among hemodialysis patients 
with high CRP levels, both low and high levels of 
osteoprotegerin strongly associated with all-cause 
mortality, producing a U-shaped relationship.115

Other proteins necessary to be mentioned in this 
context are BMP2 and BMP7. Bone morphogenetic 
protein 7 treatment has been shown to decrease 
vascular calcification in BMP7 deficient rats,116 while 
BMP2 antagonizes BMP7, promoting differentiation 
of VSMCs into the osteoblast-like phenotype.105 
Smad6 antagonizes BMP signaling and loss if its 
inhibition in Smad6 knockout mice causes aortic 
ossification.117

Pyrophosphate, a well-known inhibitor of 
hydroxyapatite formation in urine, is also produced 
by vessels and inhibits vascular calcification.118 
Lomashvili  and colleague showed reduced 
pyrophosphate levels in a group of hemodialysis 
patients,  which may contribute to vascular 
calcification.119 Pyrophosphate is hydrolyzed by 
alkaline phosphatase and alkaline phosphatase 
deficiency increases pyrophosphate levels.120 
However, no correlation was found between 
alkaline phosphatase and pyrophosphate levels 
in Lomashvili and colleagues’ study, and they 
suggested that either hydrolysis of pyrophosphate 
in tissues (not correlated with plasma level of 
alkaline phosphatase), decreased PPi synthesis or 
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increased nondialytic, or extrarenal clearance may 
cause decreased pyrophosphate levels in dialysis 
patients.119 

The Figure shows a simplified schema of the 
abovementioned mechanisms.

CLINICAL IMPLICATIONS
Many studies in general population have 

shown aortic calcification to increase overall and 
cardiovascular mortality.121-123 In hemodialysis 
patients, aortic stiffness, represented by aortic 
pulse wave velocity and carotid distensibility, are 
strong independent predictors of cardiovascular 
and all-cause mortality.124-127 Safar and colleagues 
were the first to show that carotid pulse pressure, 
as a measure of central pulse pressure, and mostly 
the disappearance of pulse pressure amplification 
were strong independent predictors of all-cause, 

including cardiovascular, mortality.128 Furthermore, 
in a therapeutic trial, Guerin and colleagues 
showed that the lack of aortic pulse wave velocity 
decrease in response to drug-induced decrease 
in blood pressure was a significant predictor of 
cardiovascular death in patients with ESRD.129 
London and colleagues studied the effect of arterial 
intimal and medial calcification on mortality of 
202 hemodialysis patients.2 Compared to patients 
with intimal calcification, patients with medial 
calcification had a longer survival, but in turn, 
their survival was significantly shorter than that 
of patients without calcifications. They showed 
arterial medial calcification to be a strong prognostic 
marker of all-cause and cardiovascular mortality 
in hemodialysis patients, independent of classical 
atherogenic factors, principally acting through 
increased arterial stiffness. The same group, in a 

Pathogenic mechanisms of vascular calcification. LDL indicates low-density lipoprotein; Ca, calcium; P, phosphorus; Ca×P, calcium-
phosphorus product; PTH, parathyroid hormone; TGF, transforming growth factor; BMP, bone morphogenetic protein; RANKL, receptor 
activator of nuclear factor-kappa B ligand; TRAIL, tumor necrosis factor-related apoptosis-inducing ligand; VSMC, vascular smooth 
muscle cell; and GLUT-1, glucose transporter gene-1.
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previous study on 110 hemodialysis patients, had 
shown that the presence and extent of vascular 
calcifications, detected by ultrasonography 
and abdominopelvic radiography, were strong 
predictors  of  cardiovascular  and al l -cause 
mortality.3 Adjusted hazard ratios of all-cause and 
cardiovascular mortality for an increase of 1 unit 
in calcification score were 1.9 and 2.6, respectively 
(P = .001 for both) in this study.

Even after kidney transplantation, vascular 
calcification is an important determinant of 
cardiovascular events. In a clinical trial on 112 
kidney transplant recipients, DeLoach and colleagues 
showed that aortic calcification, diagnosed by 
electron beam computed tomography, was prevalent 
and could predict future cardiovascular events.130 
They suggested screening of aortic calcification for 
assessment of cardiovascular risk in asymptomatic 
kidney transplant recipients. 

A large prospective clinical trial is being carried 
out on more than 4000 CKD patients in Spain 
(the NEFRONA study), which will examine the 
predictive value of several noninvasive imaging 
techniques and novel biomarkers of cardiovascular 
disease, including vascular calcification markers, 
for prediction of cardiovascular morbidity and 
mortality in CKD.131 

DIAGNOSIS
The gold standard for diagnosis of vascular 

calcification would be histological examination of the 
arterial specimens, which is not clinically feasible. 
The other recommended diagnostic techniques 
are electron beam computed tomography, which 
is more of research interest and not accessible 
in most centers of the world; ultrasonographic 
measurement of pulse wave velocity or carotid 
intima-media thickness; and plain radiography 
of the abdominal aorta.128,132-137

The Kidney Disease Improving Global Outcomes 
2009 guidelines suggest a lateral abdominal 
radiography or an echocardiography for detection 
of the presence or absence of vascular or valvular 
calcification, respectively, in patients with CKD 
stages 3 to 5.138 However, screening for vascular 
calcification is not yet recommended by many 
authorities due to uncertainty on the sensitivity 
and specificity of the recommended screening 
methods, cost versus benefit of these methods, 
and lack of effective treatment modalities.139,140 

TREATMENT STRATEGIES
A significant interaction has been found between 

dosage of calcium-containing phosphate binders 
and bone activity, and calcium load has been shown 
to significantly influence on aortic calcifications 
and stiffening in the presence of adynamic bone 
disease.141 Lower trabecular bone volume has been 
associated with development of coronary artery 
calcification and improvement in bone turnover 
has been correlated with lower rate of progression 
of coronary artery calcification.142 Therefore, many 
studies now emphasize on the use of non-calcium-
based phosphate binders as a strategy to prevent 
or even regress vascular calcification.

Phan and colleagues showed the effect of 
sevelamer on prevention of progression of both 
intimal and medial calcification in aortic wall of 
uremic apolipoprotein E-deficient mice, together 
with decreased nitrotyrosine expression, as a marker 
of oxidative damage.143 Chertow and colleagues, in 
a study on 200 hemodialysis patients, could show 
an increase in median absolute calcium score in 
coronary arteries and aorta, measured by electron 
beam tomography in calcium treated- but not in 
sevelamer-treated patients.144 The same group later 
showed decreased levels of total and LDL cholesterol, 
apolipoprotein B, β2-microglobulin, and highly 
sensitivity CRP, and increased level of high-density 
lipoprotein in sevelamer-treated but not in calcium 
acetate-treated hemodialysis patients.145 Studies by 
Block and colleagues and Asmus and coworkers 
also showed the protective effect of sevelamer on 
vascular calcification in dialysis patients.47,49 

However, in a study by Suki and colleagues on 
more than 1000 hemodialysis patients followed 
for up to 45 months, the overall mortality was not 
significantly reduced by sevelamer compared with 
calcium-based phosphate binders, except for patients 
older than 65 years of age, in whom sevelamer 
reduced the risk of death (adjusted relative risk, 
0.77).146 Also, a recent systematic review on clinical 
efficacy and safety of sevelamer in dialysis patients 
could not show any evidence that sevelamer reduced 
all-cause mortality, cardiovascular mortality, the 
frequency of symptomatic bone disease, or health-
related quality of life.147

Cinacalcet has also been studied in terms of its 
impact on vascular calcification. In a combined 
analysis  of  4  similar  studies,  Cunningham 
and colleagues surveyed 1184 ESRD patients 
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w i t h  h y p e r p h o s p h a t e m i a  a n d  s e c o n d a r y 
hyperparathyroidism (697 patients on cinacalcet 
and 487 on placebo).148 Cinacalcet significantly 
reduced cardiovascular hospitalization compared 
with placebo. In the ADVANCE clinical trial, Raggi 
and colleagues, studied the effect of cinacalcet 
plus low-dose vitamin D on vascular calcification 
of 360 prevalent hemodialysis patients and could 
show attenuation of vascular and cardiac valve 
calcification assessed by using multidetector 
computed tomography.149 The results of the 
EVOLVE trial may further delineate this issue, by 
examining the effect of cinacalcet on all-cause and 
cardiovascular mortality and morbidity, peripheral 
vascular disease, and stroke in hyperparathyroid 
maintenance hemodialysis patients.150

Other medications suggested for attenuation 
of vascular calcification in CKD patients are 
b isphophonates , 151-153 BMP7 that  has  been 
investigated in murine models of  vascular 
calcification,116 anti-RANK ligand therapy,154 
and teriparatide used for inhibition of vascular 
calcification in diabetic LDL-deficient mice.57 

CONCLUSIONS
With the bulk of data emphasizing the reverse 

associat ion between skeletal  and vascular 
mineralization, the paradigm of saving “bones” at 
the expense of hypercalcemia and adynamic bone 
disease, has changed to an integrated approach 
trying to keep the balance between healthy bones and 
vasculature. Minimizing the traditional risk factors 
of vascular calcification together with avoidance 
of hypercalcemia and high dose of calcium-based 
phosphate binders and vitamin D analogues seem to 
be important measures for prevention or attenuation 
of progression of vascular calcification. Unfortunately, 
there are not many therapeutic choices available to 
effectively reverse the process of vascular calcification, 
and most strategies seem to be preventive. With the 
evolving knowledge of the pathogenesis of vascular 
calcification, we can look forward to emergence of 
novel therapies in the future.
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