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Role of Renin-Angiotensin-Aldosterone System Gene 
Polymorphisms and Hypertension-induced End-stage Renal 
Disease in Autosomal Dominant Polycystic Kidney Disease

Gnanasambandan Ramanathan,1 Ramprasad Elumalai,2 

Soundararajan Periyasamy,2 Bhaskar VKS Lakkakula1,3

Autosomal dominant polycystic kidney disease (ADPKD) is the 
most common inherited disease of the kidneys and is marked by 
progressive cyst growth and decline in kidney function, resulting 
in end-stage renal disease (ESRD). Hypertension is thought to be 
a significant modifying factor in the progression of renal failure 
in ADPKD. A number of genetic variations involved in renin-
angiotensin-aldosterone system (RAAS) pathway genes have 
clinical or physiological impacts on pathogenesis of hypertension-
induced ESRD in ADPKD. Information on RAAS pathway gene 
polymorphisms and their association with ESRD and ADPKD, 
published till March 2013, was collected using MEDLINE search. 
The present review deals with RAAS gene polymorphisms focused 
on hypertension-induced ESRD in ADPKD in different populations. 
The results were inconclusive and limited by heterogeneity in the 
study designs and the population stratification. In lieu of applying 
next generation sequencing technologies to study complex diseases, 
it is also possible to apply the same to unravel the complexity of 
ESRD in ADPKD.
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INTRODUCTION
Autosomal dominant polycystic kidney disease 

(ADPKD) is a systemic disease with progressive 
development of fluid-filled cysts in both kidneys. It 
affects both genders in all races, with an estimated 
frequency of 1 in 400 to 1 in 1000 live births.1 The 
heterozygous mutations in the polycystic kidney 
disease 1 and polycystic kidney disease 2 genes 
account for a vast majority of ADPKD cases.2 It 
exhibits a prolonged nominal glomerular filtration 
rate, microalbuminuria, and hypertension, followed 
by a persistent decline in glomerular filtration 
rate, leading to end-stage renal disease (ESRD) in 
50% of patients during the 5th to 6th decades of 
their life.3Autosomal dominant polycystic kidney 
disease patients also show a variety of other 

abnormalities that include aneurysms and cyst in 
the liver, pancreas, spleen, and lungs. In 60% of 
ADPKD patients, high blood pressure can be seen 
even before the impairment of kidney function, 
indicating hypertension as a significant factor in 
the progression of kidney failure.4

RENIN-ANGIOTENSIN ALDOSTERONE 
SYSTEM
Renin-Angiotensin Aldosterone System 
Pathway and Hypertension

The renin-angiotensin aldosterone system 
(RAAS) has been strongly implicated as the 
susceptibility pathway in the pathogenesis of 
essential hypertension, cardiovascular disease, 
and progressive kidney disease.5 The RAAS 



Hypertension-induced Kidney Failure in Polycystic Kidney Disease—Ramanathan et al

266 Iranian Journal of Kidney Diseases | Volume 8 | Number 4 | July 2014

pathway includes 3 important components of renin, 
angiotensin, and aldosterone. Renin is secreted from 
kidney cells and stimulates formation of angiotensin, 
which consecutively stimulates the release of 
aldosterone from the adrenal cortex. Angiotensin I 
is formed by the action of renin on angiotensinogen. 
Angiotensin I is further converted to angiotensin 
II by the enzyme angiotensin-converting enzyme 
(ACE). Angiotensin II raises blood pressure by 
a number of actions, the most important ones 
being vasoconstriction and sympathetic nervous 
stimulation. In addition to the regulation of blood 
pressure, angiotensin II plays a major role in the 
sodium metabolism and renal hemodynamics.

Autosomal Dominant Polycystic Kidney Disease 
and Renin-Angiotensin Aldosterone System 
Pathway

In spite of comparable glomerular filtration rate 
in both normotensive and hypertensive patients 
of ADPKD, increased renal vascular resistance 
exhibited by hypertensive patients is the first 
demonstration of the involvement of RAAS in 
modulation of hypertension in ADPKD.6 Presence 
of elevated levels of renin in both renal tissues 
and cyst fluid of ADPKD kidneys indicates that 
the tubulocystic epithelium has the potential to 
synthesize renin.7 Furthermore, presence of RAAS 
components (angiotensinogen, ACE, angiotensin 
II, and angiotensin II type 1 receptor) within cysts 
and tubules and activation of RAAS during cyst 
expansion in ADPKD has also been demonstrated.8 
Hence, the candidate genes involved in RAAS 
pathway are of immense interest to the researchers 
engaged in the study of a wide range of disorders 
modulated by hypertension. Polymorphic variants 
of many genes involved in components of RAAS 
pathway (renin, angiotensin I, angiotensin II, 
angiotensinogen, ACE, angiotensin II receptor type 
1, angiotensin II receptor type 2, and CYP11B2) 
have been screened for clinical and physiological 
conditions of various kidney diseases. The aim of 
the present review is to summarize the knowledge 
about RAAS pathway gene polymorphisms 
investigated with regard to ADPKD. 

I n f o r m a t i o n  o n  R A A S  p a t h w a y  g e n e 
polymorphisms and their association with ADPKD 
that has been published till March 2013 through 
MEDLINE search was collected. Further, the 
bibliographies of retrieved articles were reviewed for 

additional information. Details of the polymorphisms 
studied for ADPKD in different world populations 
have been documented in the Table.9-38

RENIN
Renin is a proteolytic enzyme synthesized, stored, 

and secreted by the juxtaglomerular apparatus of 
the kidney and plays a key role in blood pressure 
homeostasis. Studies using animal models have 
clearly demonstrated the involvement of renin gene 
polymorphisms in development of hypertension.39,40 
Variations in the plasma renin activity levels of 
the black men versus women, as well as their 
white counterparts showed a wide range of racial 
differences.41 Studies on biopsy, nephrectomy, and 
autopsy specimens have demonstrated abnormal 
distribution of renin-containing cells. Hyperplasia 
of these cells in the juxtaglomerular apparatus is 
also suggestive of the fact that these cells respond 
to different stimuli when compared to the normal 
kidney.42 Furthermore, increased levels of tubular 
immunoreactive renin and high intracystic renin 
concentrations in patients with ADPKD could be 
correlated with the expressions at both the protein 
and mRNA levels in ADPKD cyst-derived cells in 
culture.7,8 Although there is no direct evidence for 
RAAS in controlling blood pressure in ADPKD, 
increased renal vascular resistance found in 
hypertensive ADPKD patients as compared to 
the normotensive patients was indicative of renal 
structural abnormalities in early high incidence of 
hypertension in ADPKD.6,43 Hypertensive patients 
with polycystic kidney disease showed significantly 
higher plasma renin activity than patients with 
essential hypertension.44 The renin gene maps to 
chromosome 1q32, spans 12.5 kb in length and 
encodes 10 exons. Several polymorphisms within 
renin gene or near its promoter sequences that 
studied for hypertension yielded inconsistent 
results.45-49 However, no study has been conducted 
to ensure the association of these polymorphisms 
with hypertension in ADPKD.

Angiotensinogen 
Renin acts on a single substrate, angiotensinogen, 

which is synthesized mainly by the liver and released 
into the circulation. The human angiotensinogen has 
a molecular mass of about 50 kD. Angiotensinogen 
is expressed in multiple tissues, including the 
liver, adipose tissue, heart, vessel wall, brain, 
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and kidney. Studies using immunohistochemical 
staining showed moderately strong angiotensinogen 

immunostaining in cyst-lining cells and in many 
proximal tubules of ADPKD kidneys.8 The gene 

Gene
Study Name Variant Country Study design Samples Association

Baboolal et al9 AGT M235T Australia Cross Sectional 189 No
Saggar-Malik et al10 AGT M235T South West Thames Region Cohort 176 No
Lovati et al11 AGT M235T Switzerland Case-Control 260/327 No*
Konoshita et al12 AGT M235T Japan Cross Sectional 103 No*
Lee and Kim13 AGT M235T Korea Case-Control 108/105 No*
Azurmendi et al14 AGT M235T Spain Cross Sectional 88 Yes
Buraczynska et al15 AGT M235T Poland Case-Control 745/520 Yes *
Baboolal et al9 ACE ACE I/D Australia Cross Sectional 189 Yes *
Uemasu et al16 ACE ACE I/D Japan Case-Control 47/100 No
Perez-Oller et al17 ACE ACE I/D Spain Cross Sectional 155 No*
van Dijk et al18 ACE ACE I/D Netherlands Case- Control 67/59 No*
Lee et al19 ACE ACE I/D Korea Cross Sectional 108 No
Saggar-Malik et al10 ACE ACE I/D South West Thames Region Cohort 176 No
Konoshita et al12 ACE ACE I/D Japan Cross Sectional 103 Yes*
Magistroni et al20 ACE ACE I/D Italy Case-Control 97/100 Yes*
Lovati et al11 ACE ACE I/D Switzerland Case-Control 260/327 Yes*
Schiavello et al21 ACE ACE I/D Australia, Bulgaria, Poland Cross Sectional 307 No
Merta et al22 ACE ACE I/D Czech Republic Case-Control 220/200 No
Persu et al23 ACE ACE I/D Belgium, France Cross Sectional 191 Yes
Ecder et al24 ACE ACE I/D USA Cross Sectional 409 No
Tripathi et al25 ACE ACE I/D India Case-Control 127/150 Yes
Buraczynska et al15 ACE ACE I/D Poland Case -Control 745/520 No*
Pereira et al26 ACE ACE I/D Multi ethnic analysis Meta-analysis 1420 No
Tazon-Vega et al27 ACE ACE I/D Spain Case Control 355/150 Yes*
Gumprecht et al28 ACE ACE I/D Poland Cross Sectional 105 No
Baboolal et al9 AT1R A1166 C Australia Cross Sectional 189 No*
Konoshita et al12 AT1R A1166 C Japan Cross Sectional 103 No*
Lee and Kim13 AT1R A1166 C Korea Case-Control 108/105 No*
Azurmendi et al14 AT1R A1166 C Spain Cross Sectional 88 Yes
Buraczynska et al15 AT1R A1166 C Poland Case-Control 745/520 Yes*
Lovati et al11 CYP11B2 T-344 C Switzerland Case-Control 260/327 No*
Lee et al29 CYP11B2 T-344 C Korea Case-Control 271/134 No*
Persu et al30 NOS3 -786T > C Belgium Cross Sectional 173 No*
Tazon-Vega et al27 NOS3 -786T > C Spain Case-Control 355/150 Yes*
Dasar et al31 NOS3 -786T > C Iran Case-Control 42/42 No*
Suzuki et al32 NOS3 Glu 298 Asp Japan Case-Control 159/270 Yes*
Noiri et al33 NOS3 Glu 298 Asp Japan Case-Control 185/304 Yes*
Persu et al30 NOS3 Glu 298 Asp Belgium Cross Sectional 173 Yes*
Walker et al34 NOS3 Glu 298 Asp United kingdom Cohort 215 No*
Reiterova et al35 NOS3 Glu 298 Asp Czech Republic Case-Control 306/100 No
Azurmendi et al14 NOS3 Glu 298 Asp Spain Cross Sectional 88 Yes
Tazon-Vega et al27 NOS3 Glu 298 Asp Spain Case-Control 355/150 Yes*
Stefanakis et al36 NOS3 Glu 298 Asp Greece Case Control 100/107 Yes*
Dasar et al31 NOS3 Glu 298 Asp Iran Case-Control 42/42 No*
Merta et al37 NOS3 Intron-4 VNTR Czech Republic Case-Control 128/100 Yes*
Persu et al30 NOS3 Intron-4 VNTR Belgium Cross sectional 173 No
Noiri et al33 NOS3 Intron-4 VNTR Japan Case-Control 185/304 No
Lamnissou et al38 NOS3 Intron-4 VNTR Greece Case Control 361/295 Yes*

List of Renin-Angiotensin-Aldosterone System Gene Polymorphisms Studied for Autosomal Dominant Polycystic Kidney Disease in 
Different Regions of the World

*Studies on end-stage renal disease in autosomal dominant polycystic kidney disease patients.
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coding for angiotensinogen (AGT) spans about 13 
kb of genomic sequence and is located on 1q42.2 
with 5 coding exons.50 To date,more than 20AGT 
gene polymorphisms have been discovered and 
only 3 were found to be significantly associated 
with hypertension.51 A common variant of exon 
II (M268T:rs699 previously described as M235T) 
involves  a  change of  the amino acid from 
methionine to threonine at position 268. Tests 
of promoter activity showed that this nucleotide 
substitution affects the basal transcription rate of 
the gene and thereby accounts for 15% to 40% of 
the variation in plasma angiotensinogen levels in 
Caucasians.52 Furthermore, a clear racial difference 
in the serum level of angiotensinogen has also 
been observed.53 The M268T has been reported 
as one of the strong candidates for hypertension 
in many populations.54-59 However, some studies 
have failed to confirm this association.60-66 The 
M268T polymorphism is in linkage disequilibrium 
with T174M and A(-6) polymorphisms of AGT that 
affects the basal transcription rate of the gene.52 
A multi-ethnic study on atherosclerosis had 
shown correlations of the M268T polymorphism 
with kidney function.67 However, no interaction 
between age of onset of ESRD and AGT M268T 
polymorphism has been observed.9 In addition to 
this, M268T genotypes or alleles have not shown 
any association with creatinine, inverse creatinine, 
hypertension, or age at ESRD in ADPKD patients, 
indicating lack of the prognostic utility of this 
polymorphism.10 The homozygous TT genotype 
of M268T induced 2-fold increase in glomerular 
filtration rate decline in Spanish ADPKD patients.14 
The individuals with ESRD due to various causes 
showed higher frequency of M268T T allele 
compared to the controls; however, M268T T allele 
showed no association with the kidney disease 
progression in dialysis patients of Polish origin.15 
The prevalence of hypertension and the ages at the 
onset of ESRD were similar among the AGT M268T 
genotypes, indicating that this polymorphism is 
not associated with hypertension or the ESRD in 
ADPKD of Korean and Japanese patients.12,13

Angiotensin-converting Enzyme
Angiotensin-converting enzyme is a glycoprotein 

present in almost all mammalian tissues and body 
fluids.68 Angiotensin-converting enzyme occurs 
on the cell surface as ectoenzymes and also as 

soluble forms in serum and other body fluids.69,70 
The main functions of ACE are conversion of 
angiotensin I to angiotensin II and the inactivation 
of bradykinin. In addition, it also cleaves many 
other oligopeptides.71The ACE gene (26 exons) 
spans about 24 kb of genomic DNA and is located 
on 17q23. One of the important polymorphisms of 
ACE is insertion/deletion of a 287-bp alu repeat 
sequence in intron 16.72 The individuals carrying 
DD genotype exhibited the highest serum ACE 
activity than the carriers of II and ID genotype 
who showed low and intermediate activity levels 
of serum ACE.72 A meta-analysis of 46 studies 
revealed that the ID and DD genotypes showed 
higher plasma ACE activity than the II genotype.73 
A recent study in elderly Chinese demonstrated 
the gender differences in serum ACE activity for 
subjects with DD genotype.74 This polymorphism 
accounts for nearly 50% of variation in the ACE 
serum activity in white population,75 but the role of 
this variant in black population is still uncertain.76 
However, ACE ID polymorphism did not show 
any evidence for transcriptional regulation in 
vitro.77This is further supported by allelic mRNA 
expression studies in human heart tissue.78 The 
ACE mRNA expression in human heart tissues 
correlated with the rs7213516, rs7214530, and rs4290 
single-nucleotide polymorphisms residing in 2kb 
to 3 kb upstream conserved regions of ACE gene.78 
Studies using the animal models have revealed that 
ACE inhibitors improved the renal function and 
reduced the formation of cysts.79-81 The available 
literature has provided the most current evidence 
for pharmacological blockade of the RAS using 
ACE inhibitors to reduce progression of chronic 
kidney disease.82

Although no consistent evidence has been found 
for the association between serum ACE levels and 
ADPKD in patients with hypertension,21,28 numerous 
studies have been conducted to examine the 
association between ACE gene polymorphisms and 
ADPKD. Extrapolation of these results to examine 
the impact of the ACE gene ID polymorphism on 
ADPKD has rendered multiple studies reporting 
conflicting results. An association between D 
allele of ACE ID among ADPKD patients has 
been detected in different populations such as 
Australia,9 Netherland,18 Japan,12 Italy,20 Belgium,23 
and Spain.27 On the contrary, no association has 
been found in Japan,16 Spain,17 Korea,19 United 
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Kingdom,10Australia, Bulgaria, Poland,21 Czech 
Republic,22 the United States,24 and Poland.28 In 
a meta-analysis, the D allele did not reveal a 
significant association with the risk of ADPKD 
when compared with I allele.26

Angiotensin II Type 1 Receptor
Angiotensin II is the major biologically active 

product of RAAS, formed from its original 
precursor ,  angiotensinogen by 2 successive 
enzymatic cleavages. Angiotensin II acts as a 
potent vasoconstrictor and exerts its effects 
through 2 structurally different receptor subtypes: 
angiotensin II type 1 receptor and angiotensin II 
type 2 receptor.83Angiotensin II type 1 receptor 
mediates most of the known biological effects of 
angiotensin II.84 In humans, angiotensin II type 1 
receptor is widely expressed in multiple tissues 
including kidney and vascular smooth muscle 
cells in the vasculature and is associated with 
increased blood pressure and progression of kidney 
disease.85,86 The gene coding for angiotensin II type 
1 receptor is localized to chromosome 3q21q25, 
spans 45.123 kb and comprises 5 exons, the first 
four exons represent the 5′-UTR, whereas exon 5 
harbored coding region.87 Several polymorphic 
sequence variants have been found on angiotensin 
II receptor type 1 (AGTR1) gene. The most well-
studied polymorphism is A1166C (rs5186), a trans 
version at position 1166, is located in the 3′-UTR 
of the AGTR1 gene.88 Reporter silencing assays 
have demonstrated that the 1166C allele interrupts 
the base-pairing complementarity of miR-155 and 
reduces the ability of miR-155 to interact with the 
cis-regulatory site. This indicates that the hsa-
miR-155 downregulates the expression of 1166A 
allele but not the 1166C allele.89 Thus, the likelihood 
of failure in the downregulation of ATR1 expression 
as the biological base is most plausible. 

The AGT  1166-C allele has demonstrated 
increased risk for coronary artery disease, ischemic 
stroke, heart failure, ESRD, and hypertension. 
Although no evidence of linkage has been found 
between A1166C and hypertension in the French 
population, a significant increase in C allelic 
frequency has been observed in hypertensives than 
the normotensive individuals.88 Evidence suggestive 
of linkage of hypertension to the genetic area 
containing the AGTR1 gene has been confirmed 
with logarithm of the odds score of 2.9.90 Studies 

thus far have not shown a consistent evidence for 
association between AGTR1 gene polymorphisms 
and hypertension among different races.91-93 The 
AGTR1 polymorphism associated with hypertension 
has shown variation from population to population. 
The AGTR1 A44221G (rs5183) polymorphism located 
in exon 5 has been associated with hypertension 
in African-Americans, with the G allele increasing 
the risk of hypertension.46 Analysis of 7 AGTR1 tag 
single nucleotide polymorphisms along with the 
A1166C polymorphisms has revealed a significant 
association of rs12695895 with hypertension in 
Han Chinese.46,94 In Mexicans, the C573T (rs5182) 
polymorphism has been involved in the risk of 
developing hypertension.95

The susceptibility to kidney disease is under 
tight genetic control and the proximal tubule salt 
and water reabsorption is mainly regulated by 
angiotensin II, mediated by AGTR1.84 Some of 
the studies have also indicated the upregulation 
of proximal tubule AGTR1 expression in the 
proximal tubule, regulated by ambient angiotensin 
II levels.96 The AGTR1 Ala163Thr (rs12721226) 
polymorphism has been significantly associated 
with the susceptibility to chronic kidney disease 
in Japanese individuals.97 The AGTR1 A1166C 
polymorphism has shown an increased frequency 
of the C allele and CC genotypes in renal damage 
among Egyptian children with ESRD.98 The 
AGTR1 1166CC genotype has been associated with 
glomerular filtration rate decline in ESRD caused by 
ADPKD in Argentinians.14 Polish individuals with 
ESRD due to various causes have shown a higher 
frequency of combined AC and CC genotypes of 
A1166C polymorphisms. Furthermore, patients 
with C allele have progressed to ESRD very 
quickly than the A allele.99 In contrast to this, no 
association between the age of onset of ESRD and 
AGTR1 A1166C polymorphism has been observed 
in polycystic kidney disease 1 gene families of 
United Kingdom and Australia.9 Furthermore, 2 
independent studies in East Asian populations have 
also failed to show association between AGTR1 
A1166C polymorphism and ADPKD.12,13

Angiotensin II Type 2 Receptor 
Angiotensin II  type 2 receptor generally 

counteracts actions mediated by angiotensin II type 
1 receptor, including inhibition of proliferation 
and angiogenesis.100,101 The angiotensin II receptor 
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type 2 (AGTR2) gene mRNA expression has been 
detected in the adult tissue of adrenal gland, heart, 
and brain. Renal angiotensin II type 2 receptor 
immunoreactivity has also been observed in the 
glomeruli of rat kidney.102 The AGTR2 expression in 
fetal life is high but substantially diminished after 
birth.103 The gene coding for human angiotensin 
II type 2 receptor is located on X chromosome 
and contains 3 exons spanning 5 kb of genomic 
DNA. The first 2 exons are untranslated and exon 
3 only encodes the angiotensin II type 2 receptor 
protein.104 Studies on mice have demonstrated that 
angiotensin II type 2 receptor plays an important 
role in the regulation of blood pressure, water 
and electrolyte balance and exhibits vasodilation 
properties.105 Angiotensin II type 2 receptor 
activation has been linked to production of nitric 
oxide in autonomic neurons.106 The role of AGTR2 
in regulation of blood pressure is evident in 
animal models; however, the association between 
AGTR2 gene polymorphisms and hypertension 
is contradictory.107-109 Analysis of tagging single 
nucleotide polymorphisms in AGTR2 gene have 
also failed to show significant association with 
hypertension.110 The AGTR2 A1332G genotypes have 
been associated with chronic kidney disease and 
scarring in posterior urethral valves of patients.111 
Furthermore, several studies using animal models 
and cell lines have also indicated the importance 
of AGTR2 in the pathogenesis and remodeling of 
renal and cardiovascular diseases. However, no 
study has been conducted to ensure the association 
of AGTR2 polymorphisms with hypertension in 
ADPKD.

Aldosterone Synthase 
Aldosterone synthase (18-hydroxylase or 

cytochrome P450 11B2) is  the only enzyme 
involved in the production of aldosterone in 
humans. It is a mineralocorticoid synthesized from 
deoxycorticosterone in the zona golmerulosa of the 
adrenal cortex by a mitochondrial cytochrome P450 
enzyme.112 Aldosterone synthase plays a major role 
in the regulation of sodium-water homeostasis, 
intravascular volume and blood pressure.113 Several 
lines of evidence have demonstrated the role of 
high plasma aldosterone level in hypertension 
and progression of kidney diseases.114-116 The 
gene coding for aldosterone synthase (CYP11B2) 
is located on chromosome 8q and contain 9 

exons. Several polymorphic variants have been 
identified in the CYP11B2 gene.117 The promoter 
polymorphism (C-344T: rs1799998), which disrupts 
a putative steroidogenic factor-1 binding site, has 
been identified to alter aldosterone production, 
leading to sodium wasting and decreased excretion 
of potassium.118 Initial studies have reported a 
positive association between -344T allele and 
essential hypertension.119 Subsequent studies on 
C-344T polymorphism with hypertension and 
other cardiovascular parameters have proven to 
be inconclusive.120-123

Higher levels of aldosterone have been noted 
in hypertensive ADPKD patients compared to the 
normotensive ADPKD patients6,124; however, their 
extracellular volumes have been observed to be 
almost similar.125 No significant association has 
been found between CYP11B2 C-344T polymorphism 
with progression of ESRD caused by ADPKD 
or immunoglobulin A.11,29,126 Nonetheless, this 
polymorphism showed significant association 
with diabetes-induced chronic renal insufficiency 
in Indian populations.127

Endothelial Nitric Oxide Synthase Gene 
Nitric oxide synthases (NOSs) are cytochrome 

P450-like hemoprotein enzymes that catalyze the 
conversion of L-arginine into l-citrulline and nitric 
oxide.128 The enzymatic synthesis of nitric oxide 
is accomplished by 3 NOS isoforms: the neuronal 
NOS (NOS1), inducible NOS (NOS2), and the 
endothelial NOS (NOS3).129 The endothelial NOS 
gene (NOS3) is composed of 26 exons, spans 21 
kb, and is located on chromosome 7q35-36.130 

Several polymorphic variants have been described 
in the NOS3 gene and some of them have been 
associated with altered nitric oxide synthesis. 
The Glu298Asp is a missense variant in exon 7 
and 27-base pair (bp) variable number of tandem 
repeat in intron-4 of NOS3 are known to alter 
endothelial NOS expression, thereby leading to 
impaired nitric oxide synthesis.30,131 The promoter 
-786T > C polymorphism of the NOS3 gene, the 
-786 C allele binds a replication protein A1 that 
acts as a repressor of NOS3 transcription.132On 
the contrary, bovine endothelial cells transfected 
with the (-786)T and (-786)C alleles have failed 
to show significant differences in the promoter 
activity.133

Various studies have shown that nitric oxide 
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negatively regulates the renin-angiotensin system 
by inhibiting ACE activity and angiotensin II 
type 1 receptors.134 The release of nitric oxide by 
endothelial cells plays a major role in regulating 
the local hemodynamics and systematic blood 
pressure.135 Decreased production of nitric oxide 
plays a major role in the progression of renal 
disease.136 A significant decrease of different 
isoforms of nitric oxide synthase in the cystic 
epithelium has been observed during the growth 
of renal cyst in Han:Sprague-Dawley polycystic 
rats.137

Direct analysis of NOS3 gene polymorphisms 
in ADPKD patients has also revealed inconclusive 
results from many populations. Although no 
direct association has observed between NOS3 
27 bp variable number of tandem repeat and 
ADPKD, patients with a 4a allele showed faster 
ESRD progression in the group of ADPKD.30,37,38,138 
In contrast to this, Japanese ESRD patients have 
failed to show significant association with this 
allele.33 No consistent evidence has been found 
for association between the promoter -786T>C 
polymorphism and progression to ESRD in type 
1 ADPKD patients.27,30 The relationship between 
Glu298Asp polymorphism and age of onset of 
ESRD in ADPKD patients has also been shown to 
be inconsistent.33-35

THERAPEUTIC IMPLICATIONS 
Effec t ive  in tervent ion  for  uncontro l led 

hypertension in ADPKD is important to reduce the 
associated morbidity and mortality.139 Diuretics, 
β-blockers, ACE inhibitors, calcium channel 
blockers, and angiotensin receptor blockers have 
been used as potential antihypertensive drugs140; 
however, there is no consensus about the type 
of antihypertensive therapy which is considered 
to be the most appropriate for ADPKD patients. 
The studies on ACE inhibitors in ADPKD are 
inconclusive because they have used small numbers 
of patients for shorter periods of time.1,80,141-144 In 
a meta-analysis of 11 randomized controlled trails 
including 1860 patients with nondiabetic kidney 
disease, the treatment of ACE inhibitors have 
shown effective control over the progression of 
kidney disease than the treatment without ACE 
inhibitors.145

Although many researchers have hypothesized 
that polymorphisms involved in RAAS pathway 

genes have been known to alter the antihypertensive 
response, experimental results have remained 
inconclusive.146-149 The Genome-Wide Association 
Study has revealed that the rs4343, which is the 
tight linkage disequilibrium with ACE I/D has 
reported strong association with blood pressure 
response to ACE inhibitors.150 However, the large 
randomized placebo controlled EUROPA trial 
failed to replicate this association.151 The 235T 
allele, rs7079 and rs2640543of AGT gene variants 
have shown association with blood pressure 
response to ACE inhibitors.152,153 However, further 
studies on larger samples failed to replicate these 
results.149,154,155 The A1166C polymorphism of 
AGTR1 gene has been widely studied, but the 
results are contradictory.149,154-158

Only  few studies  have  invest igated the 
interaction between angiotensin receptor blockers 
and RAAS gene polymorphisms. In patients with 
heart failure, the impact of angiotensin receptor 
blockers along with ACE inhibitors in lowering 
the blood pressure and N-terminal pro-B-type 
natriuretic peptide has been altered by A1166C 
polymorphisms.159 On the contrary, AGTR1 A1166C 
and C573T polymorphisms have failed to modify 
the effect angiotensin receptor blockers.157,158 The 
ACE (I/D), AGT (M235T) and AT2 variants have 
failed to alter the blood pressure-lowering response 
of angiotensin receptor blockers.157,158

CONCLUSIONS
The  ava i lab le  l i t e ra ture  on  RAAS gene 

p o l y m o r p h i s m s  w h i c h  h a v e  f o c u s e d  o n 
hypertension-induced ESRD in ADPKD in different 
populations have been limited by heterogeneity in 
the study designs and the population stratification. 
The results have not been consistent in establishing 
strong association between the risk of ESRD and 
the polymorphisms involved in RAAS pathway. 
Although an individual’s physical exercise, 
nutrition, alcohol, stress, and smoking habits have 
been known to alter the blood pressure, earlier 
studies did not consider these factors. In lieu of 
applying next generation sequencing technologies 
to study complex diseases, it is also possible to 
apply the same to unravel the complexity of ESRD 
in ADPKD.
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